Lob’s Theorem: a brief introduction

Mark Xu
September 4, 2020

Abstract

In mathematical logic, Godel’s Completeness Theorem says that statements are true if and only if they
are provable. In a startling plot twist, Godel also proved a set of Incompleteness Theorems, the first of
which states that for any sufficiently powerful mathematical system, there exist statements that cannot be
proved or disproved. Given that nearly all mathematical systems that we care about are thus essentially
incomplete, one might hope that they are sound in the sense that statements that are provable are true.
While this is indeed the case, it is not the case that this soundness can be captured from within the system.
Indeed, a theorem of Lob states that, if, for any statement o, one can prove that “if o is provable, then ¢”,
then o must be true. In this talk, we discuss the semantic notion of truth in comparison to the syntactic
notion of provability. We then provide a sketch of Godel’s First Incompleteness theorem and its implications,
concluding with a proof of Lob’s Theorem and a discussion on the various ways a system can fail to know
itself.

1 Background

Mathematics is often thought of the study of Truth free from subjectivity. This is not entirely true (although it
is not entirely false either). It would be more correct to say that mathematics is the study of Truth relative to a
certain set of axioms. It would be even more correct to say that mathematics is the study of Truth relative to a
certain set of axioms under a given deductive system. It would be the most correct to say that mathematics is
the study of Truth relative to a certain set of axioms under a given deductive system within a given structure.

For everything that follows, we will be working with the axioms of Peano Arithmetic and it’s corresponding
language, but the results hold with more generality.

1.1 Models, Structures and Truth

Informally, a structure of a given language is a set of objects along with a set of interpretations of all the symbols
in the language in relation to the given objects. For example, if your language is {S}, a possible interpretation
is that your set is N and S : 2 — o + 1. A different structure is that your set is R and S : « — /2. However,
most of the time we want our structures to have, well, structure. The way we do this is to get a set of axioms A
and constrain all structures so that our axioms are ‘true’ inside the structures. What do I mean by ‘true’? Well,
informally all mathematical statements are built from pieces connected together with logical connectives - we
assign truth values to all of the base pieces (via our structure and/or deductive system) and then our statement
is true if all of the right pieces are true. “Snow is white” is true if and only if snow is white. If a given set of
axioms A is true inside a structure S, then we say that S models A and we write S = A.
If a given sentence o is such that for all structures S, if S |= A, then S |= {o}, then we write that A = o.

1.2 Provability

Slightly separately from truth, we have this notion of provability. Informally, something is provable from a set
of axioms if you can write down a proof for it. What’s a proof? It’s just a sequence of mathematical statements
where each statement is either an axiom or follows from one of your rules of inference. What are these rules
of inference? It turns out that the precise deductive system you use isn’t really that important, it just has to
include stuff like modus ponens.

Notice that this notion of provability only depends on your set of axioms and doesn’t reference any particular
model. If a sentence o is provable from a set of axioms A, we write A F o.

Mark Xu
Lob’s Theorem

1.3 Godel’s Completeness Theorem
Theorem 1.1 (Godel’s Completeness). For any set of axioms A, Ao < AlEo.

The proof is kind of tedious so I'm not going to explain it, but Godel’s Completeness Theorem basically
says that that if something is true is all possible models of a given set of axioms, then it must logically follow
from those axioms and thus must have a proof. If this weren’t the case, then there would be statement that
were true in every world where a set of axioms were true, but we wouldn’t be able to show that that was the
case, which would make math kind of hard.

2 Godel’s First Incompleteness Theorem

The standard English phrasing of Godel’s First Incompleteness Theorem goes “There are statements in Peano
Arithmetic that are true, but not provable”. If you're using ‘true’ to mean ‘true’ in all models, then this
phrasing is wrong. The obvious problem is that by Godel’s Completeness Theorem, since PA is a set of axioms,
all statements that are true in PA must be provable in PA. Some people use the word ‘true’ to mean ‘true in
the natural numbers’, and in that sense, Godels’ theorem does say that there are statements that are true but
not provable. But you wouldn’t expect them to be provable, because Godel’s Completeness Theorem.

Theorem 2.1 (Godel’s First Incompleteness). For any set of sufficiently powerful azioms A, there exists a
mathematical statement such that A does not model o and A does not model =o. We call such a o undecidable.

What do I mean by ‘sufficiently powerful’? Basically, you need to be able to encode Turing Machines inside
A. For now, you can think of it as being able to prove the axioms of PA, but PA is actually much stronger than
you need for this sort of thing.

2.0.1 Coding

Let’s say that you're writing computer program and you need to use lists, but for some reason you really don’t
like lists. Since you really like natural numbers (who doesn’t?), you come up with a clever way to use natural
numbers to represent lists using the prime factorization theorem.

Given a list of numbers (nq,...,ny), we encode them in the product [], p?"'“, where p; is the ith prime
number. Of course, encoding numbers means that you can encode any list drawn from any countable set: in
particular, you can encode the language of arithmetic. Since a arithmetic statement is just a list of symbols with
certain properties, with a lot of work, you can define what it means to be mathematical statement in arithmetic.
Since a proof is just a list of statements that satisfy other properties, you can also define what it means to be a
proof in arithmetic. Thus, with a whole lot of work, you can define a formula PROOF (n, s) := “n is the code of
a proof of the sentence whose code is s”. Using this, we define a formula PRVB(s) := 3n : PROOF(n, s). For
notation, given a formula ¢, let [¢] be it’s code.

Proof of Godel’s First Incompleteness Theorem

Proof. Let’s try the obvious thing and figure out why its wrong. Let ¢(z) := -“PRVB(z). Let ¢ be the code of ¢
and consider ¢(c) <= —PRVB(c). Ideally, this statement ¢(c) would say something like “I am not provable”,
but it doesn’t quite do that. Notice that ¢(c) says that ¢ is not provable, which doesn’t really make any sense
since ¢ needs a variable.

How do we get around this? Well the easy answer is something called the Diagonal Lemma, which states
that for all formulas F', one can construct a sentence o such that ¢ <= F([o]). If this Lemma is true, then
we can let ¢ := -PRVB(), and we’re done. We now prove the Diagonal Lemma.

Let F' be the property we want to diagonalize. First, we need to define a function subs(n) = [a(n)], where
[a] = n. In fact, what we actually need is a formula issub(n,m) <= subs(n) = m. Such a formula exists
because we have assumed our axiom system to be sufficiently powerful.

Given such a formula, define

B(z) =Yy : (issubs(z,y) = F(y))

. Thus we have that our axiom system proves

Ao = Vy: (y=[o(l9)] = F(y)) < F(o([s])])

Mark Xu
Lob’s Theorem

. Now we just plug in g for ¢ and we get

pAD) = FBBDD

2.1 Non-Standard Models

So it seems like we can make some statement o that says “I am not provable”. OF course, since o is actually
not, provable, it seems like this statement is somehow “true”. The problem is that while being provable is not
dependent on the model, trying to express provability in a formula causes such a dependence to arise. The
trouble is when you know that PRVB(o) is true and you want to extract the proof out of it. Ideally, you would
get back some natural number that encoded the proof and then just convert it to symbols, but the problem
is that this assumes that you're only quantifying over the natural numbers. If you have a strange model of
arithmetic, then you might get back some transcendental number, and when you try to get the proof out, you
might end up with an infinite sequence of:

,,,—|—|—\—|—|—\0'7 —\—|—|—\0'7 —\—|0" g

This makes it possible to have a model of arithmetic where Godel’s statement is false. What if we tried to get
rid of the ‘non-standard’ part of arithmetic? This turns out to be impossible

Theorem 2.2. There is no set of arioms A that can only be modeled by N

Proof. Suppose such an A exists. Then Godel’s sentence o would be true in all possible models of A. By Godel’s
completeness theorem, A = o, a contradiction. O

This particular proof of Godel’s First Completeness theorem also gives us Godel’s Second Incompleteness
Theorem for free.

Theorem 2.3 (Godel’s Second Inconsistency). No consistent sufficiently strong recursive axiomatic system can
prove that it is consistent.

The first thing we have to figure out is if it’s possible to express consistency in A. Well, if A was inconsistent,
then there would be a proof of everything. Thus, consistency of A is biconditional with there being a statement
that A cannot prove. We can thus define a consistency predicate CON(A) := =PRVB([0 # 0]). This allows us
to talk about A’s consistency within A.

Proof. Suppose that we could prove our system consistent. If we could prove our Godel statement, that would
be a contradiction. Since we can prove that our system is consistent, we can thus prove that that we cannot
prove our Godel statement. However, by definition of our Godel statement, this constitutes a proof of Godel’s
statement, a contradiction. Thus our system is not consistent. O

Godel’s Second Incompleteness Theorem say that no system can prove its own consistency in general. How-
ever, we can hope that we might be able to prove consistency for specific formulas. While it is the case that
PRVB() is globally unreliable, it might be the case that there are some statements o such that A can prove
PRVB(¢) = o, i.e. when A is right whenever A thinks that it’s proved o. It turns out that this is not the
case.

3 Lob’s Theorem

Theorem 3.1 (Lob). (PA = (PRVB(o) = 0)) = (PA=0))

Before we prove this theorem, we go over some properties of PA that we’ll need.

Mark Xu
Lob’s Theorem

3.1 Preliminaries
i (PAl= o) = (PA=PRVB(0))
i PA (PRVB(s) = PRVB(PRVB(0)))
ii PA = (PRVB(c = ¢) = (PRVB(0c) = PRVB(¢)))

The key to proving Lob’s theorem is a construction called Lob’s Sentence. Basically, given any statement o,
our Lob’s Sentence L <= (PRVB(L) = o). This can be done by applying the diagonal lemma

Proof.

By definition of L PA = (PRVB(L) <= PRVB(PRVB(L) = o)) (1)
Hypothesis PA = (PRVB(o) = o) (2)
By i PA = (PRVB(PRVB(L) = o) —> (PRVB(PRVB(L)) = PRVB(s)) (3)
By (1) and (3) PA = (PRVB(L) = (PRVB(PRVB(L)) = PRVB(c)) (4)
By ii PA = (PRVB(L) = PRVB(PRVB(L))) (5)
By (4), (5) & MP PA = (PRVB(L) = PRVB(0)) (6)
By (2), (6), &« MP PA= (PRVB(L) = o) (7)
Byi& (7) PA = PRVB(PRVB(L) = o) 8)
By (1) & (8) PA |= PRVB(L) 9)
By (7) & (9) PAEo (10)

O

